News :

January 01 2023

Atomic layer growth of 2D thin films for RF-switches

In the Leti campus, the silicon technology division aims to define, develop, and process materials for advanced electrical device integration. In particular, we are studying advanced thin film deposition, on vacuum equipment and at angstrom scale. This post-doctoral position is part of a project including multiple French laboratories; the objective is to explore the applicative […] >>

January 01 2023

Auto-adaptive neural decoder for clinical brain-spine interfacing

CEA/LETI/CLINATEC invite applications for postdoctoral position to work on the HORIZON-EIC project. The project goal is to explore novel solutions for functional rehabilitation and/or compensation for people with sever motor disabilities using auto-adaptive Brain-Machine Interface (BMI) / neuroprosthetics. Neuroprosthetics record, and decode brain neuronal signal for activating effectors (exoskeleton, implantable spinal cord stimulator etc.) directly […] >>

January 01 2023

Cryo-CMOS electronics: Thermal and strain effects in FDSOI MOSFETs down to very low temperature

In the context of the development of the cryo-electronics, i.e. the extension of operation of digital or analog electronics to cryogenic temperatures, down to a few tens of mK, in particular for quantum applications, the aim of the post-doctoral project is to continue the effort of modeling and characterization of the FDSOI technology at low […] >>

January 01 2023

Modeling silicon and germanium spin qubits

Silicon/Germanium spin qubits have attracted increasing attention and have made outstanding progress in the past two years. In these devices, the elementary information is stored as a coherent superposition of the spin states of an electron in a Si/SiGe heterostructure, or of a hole in a Ge/SiGe heterostructure. These spins can be manipulated electrically owing […] >>

January 01 2023

Microfluidic biocatalysis

The overall objective of the project is to propose a new mode of biocatalytic production based on continuous flow and combining macro and micro-fluidics. The aim is to develop a biocatalysis process involving fluidic bioreactors capable of ensuring continuous biotransformation, thanks to immobilized enzymes or whole cell catalysts. This process will be optimized to improve […] >>
More information
X