Packaging and miniaturization technology implementation for integrated spectrometer realization: high spectral resolution in the SWIR for telecom and greenhouse gas monitoring

Published : 10 May 2022

                                  E C O L E   D O C  T O R A L E    EEATS

              Electronique, Electrotechnique, Automatique, Traitement du Signal

               Proposition de thèse, avec financement propre, à démarrer en 2022-2023
Thesis title :
«Packaging and miniaturization technology implementation for integrated spectrometer realization:
high spectral resolution in the SWIR for telecom and greenhouse gas monitoring
 »

Laboratoire d’accueil :
IPAG, équipe instrumentation « CHARM »
IMEP-LAHC, équipe photonique, « PHOTO »

Spécialité de la thèse :
Optique – radiofréquences (OR)

Nature du financement :
Financement Projet Région – Pack Ambition Recherche (obtenu)

Contact pour candidater :
Guillermo Martin,
Institut de Planétologie et d’Astrophysique de Grenoble, Université Grenoble Alpes, Bât OSUG A (CS 40700)
38058 Grenoble Cedex 9
Tél: 04 76 63 52 76
guillermo.martin@univ-grenoble-alpes.fr

Alain Morand, MCF HDR EEATS, IMEP-LAHC, 50%
Institut de Microélectronique d’Electromagnétisme et de Photonique de Grenoble
Tél: 04 56 52 94
alain.morand@univ-grenoble-alpes.fr
********************************************************************************
Abstract :
In the recent years, a lot of researchs have been focused on the miniaturization of optical spectrometers. Indeed, these devices are important for optical signal caracterization. The objective of this work is to develop and realize an optical spectrometer having both a compact size and high optical spectral resolution. It is based on the use of a glass integrated photonic chip composed of a straight waveguide finished by a mirror. Nano scattering centers considered as antennas are set on the waveguide surface. Each antenna transmits an optical signal on each camera pixel directly bonded at the surface wafer. The mirror at the end of the waveguide makes a stationary wave in the straight waveguide. The antennas allow to depict the optical intensity of the stationary wave. Then the optical spectrum of the signal can be obtained by applying a fast inverse fast Fourier transform. This approach has already been developed in the wavelength range from 700nm to 1000nm. Now, we are trying to extend this spectrometer skills in the SWIR (from 800nm to 1700nm). A novel approach of the antenna design is proposed to limit the crosstalk on each SWIR camera pixel. The objectives of this work are firstly to optimize the antenna realization used for the sampling. Secondly, the student will develop our ability to package the glass chip with the camera in order to have an airborne equipment.

Profil et skills required :
Student recently graduate from a master degree of Physics, Optical, Optoelectronic, Engineering school (Sup Opt, Phelma …)
Experimental profil, optical characterization, optical set-up use with programming knoweledge (Python, Matlab, Mathcad…), simulation software and visual programming language to control instrument (Labview).
– Propagation waveguide characterization and nano antenna scattering analyis. Data processing, spectrum reconstruction from inverse Fourier Transform, inversion method or least mean square method.
-Modelisation of the waveguide propagation and of the antenna scattering

Profil et compétences requises
Étudiant(e) sortant d’une formation type M2 de Physique Recherche & Innovation, Physique Générale, Optique, Optoélectronique, Ecole d’Ingénieur (Sup Optique, Phelma, …)
Étudiant(e) à profil plutôt expérimental, caractérisation optique, montage de bancs optiques, avec des connaissances en programmation (Python, Matlab, Mathcad…), logiciels de simulation, pilotage (Labview).

– Caractérisation de guides d’onde (propagation) sur lesquelles nous avons réalisé des nano-antennes (diffraction). Traitement des données, reconstruction du spectre par Transformée de Fourier inverse, méthodes d’inversion (Matrices Pseudo-Inverses), minimisation (moindres carrés).

– Modélisation des phénomènes de propagation et interférence du signal optique dans les guides d’onde et extrait de ceux-ci grâce aux plots diffusants.

More information
X