Offres de Thèses, Stages et Post-docs
Rechercher...
nombre d'offres : 124
Date de début : 03/02/2025
Offre n° CROMA-CMNE-03-10-2024
- Mots clés : FMNT, IMEP-LaHc
- Laboratoire : FMNT / IMEP-LaHc
- Code CEA : CROMA-CMNE-03-10-2024
- Contact : alessandro.cresti@grenoble-inp.fr
Date de début : 03/02/2025
Offre n° CROMA-Photo-03-10-2024
- Mots clés : FMNT, IMEP-LaHc, LMGP
- Laboratoire : FMNT / IMEP-LaHc / LMGP
- Code CEA : CROMA-Photo-03-10-2024
- Contact : davide.bucci@phelma.grenoble-inp.fr
Méthodes alternatives de détection dynamique pour une nouvelle génération des capteurs biochimiques de type ISFET en graphene
Date de début : 01/10/2024
Offre n° CROMA-CMNE-31-05-2024
Alternative methods based on dynamic detection for a new generation of ISFET-like biosensors in graphene
Deadline for application: 18th of June 2024, beginning of contract: 1st of Oct. 2024
Place:
CROMA (Minatec) and Néel Institut, Grenoble (France)
Advisors:
Irina Ionica (Associate Professor Grenoble INP),
Cécile Delacourt (CNRS rechercher, Néel Institut),
Context and objectives:
This thesis is placed in the context of biochemical detection with ISFETs (Ion Sensing Field Effect Transistors), for which
the current which passes through the transistor channel is modulated by the presence of the charges to be detected
in its proximity. In the majority of cases, detection is done in real time by monitoring the drain-source current of the transistor channel.
Quantitative measurement could be done by calibrating the drain current as a function of the gate voltage of the transistor relative to the load to be detected. This method which has already been used for many demonstrators and
applications, uses the monitoring of a quantity quasi-static (e.g. the threshold voltage of the transistor), which non-discriminatorily encompasses all type of charge contained in the solution and sufficiently close to the channel (ions, fixed charges adsorbed on the surface of the device, interface states etc).
Unfortunately, in a “non-laboratory” application, a solution does not only contain the element we wish to detect, but many others and it would be important to identify typical electrical responses associated with the constituents. Dynamic approaches, such as non-equilibrium potential or low-frequency noise, are promising because they offer, for example, the possibility of searching for specific signatures depending on the measurement frequencies.
The objective of this project is therefore not to show another demonstrator which would improve one or several
figures of merit for a given application, but rather to explore dynamic detection alternatives with an ISFET, to
study/identify the mechanisms that are responsible for the particular electrical responses of the sensor. At
CROMA, we showed that the out of equilibrium body-potential response in device fabricated on silicon-on
insulator (SOI) 1 and due to the presence of Schottky barriers at the contacts2 can be used for sensing3.
The aim of this thesis is first to implement similar methods for graphene field effect transistors and benchmark
the dynamic detection with the quasi-static and more conventional approach. At Neel, we have demonstrated
the ability to fabricate array of GFETs that offers many suitable properties for sensing living matters4 and
biochemical compounds5. Sensors manufactured on graphene will benefit from the flexibility of the technology
in order to study a wide range of options to understand the mechanisms involved and to optimize the sensors.
Modelling and simulation components will elegantly complete the project for understanding of the phenomena
and will provide keys for the optimization of future sensors.
Work do be done:
The PhD student will develop the complete chain, from device fabrication, electrical measurements in equilibrium and dynamic conditions, sensing layer and surface functionalization for specific detection applications, modeling and simulation, allowing the comprehension of physical phenomena involved
and the optimization for the sensor. To remain more generic at first, ionic solutions close to those used in cell culture media with compositions simplified (e.g.: a single type of ion) and variable concentrations will make it possible to evaluate the mechanisms and detection improvements with dynamic methods (nonequilibrium potential and/or low frequency noise). More pragmatic applications will be explored in the second half of the thesis (e.g. neuronal sensing).
1M. Alepidis, A. Bouchard, C. Delacour, M. Bawedin and I. Ionica, « Out-of-Equilibrium Body Potential Measurement on Silicon-on-Insulator
With Deposited Metal Contacts, » in IEEE Transactions on Electron Devices, vol. 67, no. 11, pp. 4582-4586, 2020
2M. Alepidis, G. Ghibaudo, M. Bawedin & I. Ionica, Origin of the Out-of-Equilibrium Body Potential In Silicon on Insulator Devices With
Metal Contacts. IEEE Electron Device Letters, 42(12), 1834-1837, 2021
3M. Alepidis, A. Bouchard, C. Delacour, M. Bawedin, & I. Ionica, Novel pH sensor based on out-of-equilibrium body potential monitored in
silicon on insulator with metal contacts. In ECS Meeting Abstracts (No. 59, p. 1589). IOP Publishing, 2021
4Dupuit, V., Terral, O., Bres, G., Claudel, A., Fernandez, B., Briançon-Marjollet, A., & Delacour, C. (2022). A multifunctional hybrid graphene
and microfluidic platform to interface topological neuron networks. Advanced Functional Materials, 32(49), 2207001.
5Terral, O., Audic, G., Claudel, A., Magnat, J., Dupont, A., Moreau, C. J., & Delacour, C. (2024). Graphene field-effect transistors for sensing
ion-channel coupled receptors: towards biohybrid nanoelectronics for chemical detection. arXiv preprint arXiv:2402.04378.
Knowledge and skills required:
The candidate must have a solid knowledge of physics of semiconductors and devices. Clean-room fabrication, electronics of measurement systems, notion of chemical physics, surface physics or electrochemistry would be appreciated to better understand the interaction at the interface with the top gate liquids. The candidate is expected to enjoy experimental work and the development of adapted measurement protocols.
Scientific curiosity, motivation, creativity, tenacity are mandatory qualities in order to take full advantage of the scientific environment of this thesis and to gain excellent expertise for his/her future career. The topic is in the field of applied physics, but close to the fundamental physics, as well as to the industrial world. After the PhD, the candidate will easily adapt to both academic and industrial research environments.
The candidate must have a very good academic record, with high grades.
For the application, send your CV, motivation l
- Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
- Laboratoire : FMNT / IMEP-LaHc
- Code CEA : CROMA-CMNE-31-05-2024
- Contact : irina.ionica@grenoble-inp.fr
Simulation, fabrication et caractérisation de transducteurs piézoélectriques transparents à base de nanofils de ZnO
Date de début : 01/10/2024
Offre n° CROMA-CMNE-28-05-2024
Simulation, fabrication et caractérisation de transducteurs piézoélectriques transparents à base de nanofils de ZnO
Sujet détaillé :
Les dispositifs piézoélectriques suscitent un intérêt croissant en tant que micro-source d’énergie en récoltant l’énergie mécanique ambiante, et en tant que capteurs via l’effet piézoélectrique direct. Dans ce contexte, les matériaux semi-conducteurs sous forme de nanofils constituent un élément de base prometteur pour la fabrication de dispositifs innovants. Les nanofils présentent généralement un diamètre de plusieurs dizaines de nanomètres et une longueur d’environ un micromètre. Grâce à cette géométrie, ils présentent généralement une excellente qualité cristalline et bénéficient de propriétés physiques remarquables liées à leur rapport surface/volume élevé. L’oxyde de zinc (ZnO), semi-conducteur biocompatible composé d’éléments abondants, présente notamment de nombreux atouts et peut être fabriqué sous forme de nanofils par un grand nombre de techniques de dépôt. Grâce à sa structure cristalline wurtzite, les nanofils de ZnO se développent le long de l’axe c piézoélectrique. Les réseaux de nanofils de ZnO alignés verticalement sont donc sensibles aux contraintes mécaniques et sont susceptibles d’être intégrés dans des nanocomposites piézoélectriques visant soit à détecter des contraintes mécaniques (par exemple, les lecteurs d’empreintes digitales), soit à récolter avec une bonne efficacité l’énergie mécanique dans l’environnement et donc à jouer le rôle d’une micro-source d’énergie.
L’objectif de cette thèse de doctorat est d’explorer théoriquement et expérimentalement l’amélioration des performances des réseaux à haute densité de nanofils de ZnO de taille ultime sur un substrat transparent (par exemple le verre) recouvert d’une électrode conductrice transparente (AZO, etc.). Des nanofils de ZnO de dimensions et de propriétés contrôlées (états de surface, dopage) seront développés à l’aide d’une technique de dépôt chimique à faible coût et à basse température, ayant un faible impact sur l’environnement et un potentiel industriel élevé. L’intégration dans des dispositifs sera réalisée sur la base du savoir-faire du consortium de laboratoires. Des techniques de caractérisation complémentaires avancées seront utilisées au niveau des dispositifs et des nanofils : des montages fait maison seront utilisés au niveau des dispositifs. Des plates-formes AFM complémentaires (SSRM, SCM, TUNA, SMIM, etc.) seront utilisées pour caractériser les nanofils individuels. Toutes ces données expérimentales (géométrie, dopage, états de surface) nous aideront à construire et à valider une plateforme de simulation à la fois au niveau du nanofil unique et du dispositif. La plateforme de simulation fournira des directives d’optimisation pour les futurs capteurs et dispositifs de récupération d’énergie.
Références:
- M. Parmar et al. Nano Energy 56 859-867 (2019). DOI: ttps://doi.org/10.1016/j.nanoen.2018.11.088
- S. Lee et al. Adv. Funct. Mater. 24 1163-1168 (2014). DOI: https://doi-org.gaelnomade-2.grenet.fr/10.1002/adfm.201301971
- J. Villafuerte et al, Nano Energy 114 108599 (2023), https://www.sciencedirect.com/science/article/abs/pii/S2211285523004366
- T. Jalabert et al. Nanotechnology 34 115402 (2023). DOI 10.1088/1361-6528/acac35
- R. Tao et al., Adv. Electron. Mater. 4(1) 1700299 (2018). DOI: 10.1002/aelm.20170029
- A. Lopez et al, Nanomaterials 11(4) 941 (2021). https://doi.org/10.3390/nano11040941
- A. Lopez et al., Journal of Physics D: Applied Physics 56 125301 (2023). DOI 10.1088/1361-6463/acbc86
- C. Lausecker et al. Inorganic Chemistry 60 (3) 1612-1623 (2021) https://doi-org.sid2nomade-2.grenet.fr/10.1021/acs.inorgchem.0c03086
- Q. C. Bui et al., ACS Appl. Mater. Interfaces 12 (26) 29583–29593 (2020) https://doi-org.sid2nomade-1.grenet.fr/10.1021/acsami.0c04112
- M. Manrique et al., Energy Technol. 2301381 (2024), https://onlinelibrary.wiley.com/doi/10.1002/ente.202301381
Localisation
Le candidat travaillera dans l’équipe Micro Nano Electronics Devices (CMNE) du Centre de radiofréquences, d’optique et de micro-nanoélectronique des Alpes (CROMA), dans l’équipe Nanomatériaux et Hétérostructures Avancées (NanoMAT) du Laboratoire de Génie Physique et Matériaux (LMGP), dans l’équipe PROSPECT du LTM et dans l’équipe Plateforme de Nanocaractérisation (PFNC) du CEA-LETI.
Liens internet:
https://croma.grenoble-inp.fr/,
http://www.lmgp.grenoble-inp.fr/ ,
https://ltm.univ-grenoble-alpes.fr/,
https://ltm.univ-grenoble-alpes.fr/research,
https://www.leti-cea.fr/cea-tech/leti/Pages/recherche-appliquee/infrastructures-de-recherche/plateforme-nanocaracterisation.aspx
Profil et compétences requises :
Le (la) candidat (e) doit être un étudiant en école d’ingénieur ou en Master 2 dans les domaines de l’électronique, des nanosciences et/ou de la physique des semi-conducteurs. Il est souhaitable que le candidat ait des connaissances dans un ou plusieurs de ces domaines : physique des semi-conducteurs, simulation par éléments finis, microscopie à force atomique (AFM), techniques de salle blanche et caractérisations associées (SEM, etc.). Les notes et le rang obtenus en licence et surtout en master constituent un critère de sélection très important pour l’école doctorale. Des compétences spécifiques en matière de travail en équipe et d’expression orale et écrite en anglais seront appréciées. Nous recherchons des candidats dynamiques et très motivés.
Financement de la thèse de doctorat: Le financement est disponible via le LABEX Microélectronique (2024 – 2027) regroupant le CROMA, le LMGP, le LTM, et le CEA-LETI dans la région grenobloise..
Contacts
Dr. Gustavo ARDILA gustavo.ardila@univ-grenoble-alpes.fr Tel : 04.56.52.95.32
Dr. Vincent CONSONNI vincent.consonni@grenoble-inp.fr Tel : 04.56.52.93.58
Dr. Bassem SALEM bassem.salem@cea.fr Tel : 04.38.78.24.55
Dr. Gwenael LE RHUN gwenael.le-rhun@cea.fr Tel : 04.38.78.12.29
- Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc, Leti, LMGP, LTM
- Laboratoire : FMNT / IMEP-LaHc / Leti / LMGP / LTM
- Code CEA : CROMA-CMNE-28-05-2024
- Contact : gustavo.ardila@univ-grenoble-alpes.fr
Optique intégrée pour le développement de composants multi-puces dédiés à la génération de signaux térahertz.
Date de début : 01/10/2024
Offre n° CROMA-PHOTO-19-03-2024
Optique intégrée pour le développement de composants multi-puces
dédiés à la génération de signaux térahertz.
KEYWORDS :
Laser, Integrated Optics, TeraHertz, Communications
CONTEXT:
The technological development of communications devices, new and futures uses such as video conferencing, streaming, Internet of Things (IOT), 6G, AI, continue to further increase the pressure on telecommunications systems to reduce latency while simultaneously increasing both data rates and the number of connected devices. This recurring problem in the world of telecommunication leads to different communication generation (3G,4G, 5G…).
The frequency bands currently used for telecommunications already cover a large part of the spectrum, including the experimental bands at 60 GHz in the 5G standard. To tackle this problem, 6G plans to use sub-terahertz frequencies (>100GHz) and European roadmap expects to launch commercial products as soon as 2030. Systems operating at such frequencies are difficult to conceive because they are not compatible with standard architectures. Optical technics offer competitive solutions to reach these band, and even higher frequencies. Such realization is also of interest for a wide range of application, including spectroscopy, sensing, radars…
The ideal solution would rely on high performance integrated devices, compatible with current communications systems and capable of evolving to meet the demand of future needs.
At the CROMA laboratory, we recently demonstrated the use of co-integrated lasers on glass for communication system and the generation of continuous carrier at frequency up to terahertz (300GHz) with outstanding spectral properties.
OBJECTIVES:
The PhD work will be carried out as a part of a national research project, involving academic and industrial partners. Our goal is to fabricate a co-integrated multi-chip module for the generation and high speed modulation of terahertz signals. The candidate will focus on the design, manufacturing, characterization and simulation of the laser modules. The integrated laser chips will be produced using the technological facilities available at the CROMA,
including dedicated clean room, with the help of technical support, and advanced characterization systems (atomic force microscopy, dedicated optical benches…).
The laser chip will be optically and mechanically interfaced with a Lithium Niobate chip realized by an industrial partner, specifically for this project. Consequently, the applicant will be involved in the co-design of the two structures and in the definition of interconnecting solution of the two chips. The module will be packaged to be characterized and tested by different partners. The candidate will be involved in experiments at the different sites during
the project.
EXPECTED WORK:
- Model and simulation of the manufacturing process, including the fabrication of waveguides using ion exchange techniques and the realization of Bragg grating by photolithographic process.
- Laser Manufacturing including clean room process, molecular bonding, dicing and polishing
PhD Position
- Characterization of components, including geometrical (AFM) and optical evaluation (mode profile, gain/loss, spectral measurements… )
- Advanced characterizations: optical intensity noise, optical and RF linewidth will be estimated using opto-RF characterizations. Preliminary communication experiments will be carried-out at the CROMA laboratory using advanced modulations, including optical coherent formats.
- Collaboration with industrial and academic partners from design to experimental validation.
The work plan is composed of different steps:
- bibliographic studies to determine the current state-of-art and position the thesis results
- Analysis and handling of in-house existing simulation tools
- trainings on fabrication process and characterization tools
- reporting : technical reports, scientific publication and conferences
APPLICANTS:
We are looking for candidates inclined to develop advanced skills in the manufacturing and characterization of integrated optics and laser devices. Theoretical training in electromagnetism and laser physic is highly recommended, if not essential. The doctorate will benefit from an environment recognized both for its scientific level (in the top 5 of the world’s innovative cities, 25.000 researchers, 65000 Students…) and for its environment (French Alps).
The laboratory facilities being located in secured areas, the final decision is also depending on the acceptance of the application by a security officer.
The thesis funding is part of a national research project already underway.
Applications should include CV, cover letter, academic marks and diplomas.
Expected starting date: Oct. 2024
For more details, please contact:
Julien POËTTE julien.poette@grenoble-inp.fr
Lionel BASTARD lionel.bastard@grenoble-inp.fr
Jean-Emmanuel BROQUIN jean-emmanuel.broquin@grenoble-inp.fr
- Mots clés : Sciences pour l'ingénieur, Electronique et microélectronique - Optoélectronique, FMNT, IMEP-LaHc
- Laboratoire : FMNT / IMEP-LaHc
- Code CEA : CROMA-PHOTO-19-03-2024
- Contact : julien.poette@grenoble-inp.fr