News : DCOS
January 01 2023
Design and fabrication of the magnetic control of 1.000 qubits arrays
Quantum computing is nowadays a strong field of research at CEA-LETI and in numerous institutes and companies around the world. In particular, RF magnetic fields allow to control the spin of silicon qubits, and pathway for large scale control is a real technological challenge. The bibliographic analysis and the studies already carried out will able […] >>
January 01 2023
Cryo-CMOS electronics: Thermal and strain effects in FDSOI MOSFETs down to very low temperature
In the context of the development of the cryo-electronics, i.e. the extension of operation of digital or analog electronics to cryogenic temperatures, down to a few tens of mK, in particular for quantum applications, the aim of the post-doctoral project is to continue the effort of modeling and characterization of the FDSOI technology at low […] >>
January 01 2023
Design of 2D Matrix For Silicum Quantum computing with Validation by Simulation
The objective is to design a 2D matrix structure for quantum computing on silicon in order to consider structures of several hundred physical Qubits. In particular the subject will be focused on: – The functionality of the structure (Coulomb interaction, RF and quantum) – Manufacturing constraints (simulation and realistic process constraint) – The variability of […] >>
January 01 2023
Development of large area substrates for power electronics
Improving the performance of power electronics components is a major challenge for reducing our energy consumption. Diamond appears as the ultimate candidate for power electronics. However, the small dimensions and the price of the substrates are obstacles to the use of this material. The main objective of the work is to overcome these two difficulties […] >>
January 01 2023
Advanced biological functionalization for graphene biological sensors on flexible subtrate
The need for biological sensing solutions is constantly growing. Amid targeted applications, some require biosensor with high sensitivity. At CEA LETI we are running a project that aim at developing novel innovative wound dressing equipped with graphene biological sensors to track wound bacterial proliferation indicative of sepsis. The sensor is a Solution gated graphene FET-like […] >>